Abstract

The growth of GaN buffer layers of thickness 10–25 nm directly on 6H–SiC (0001) substrates was studied using low energy electron microscopy, atomic force microscopy and cross-sectional transmission electron microscopy. The Ga flux was supplied by an evaporative source, while the NH3 flux came from a seeded beam supersonic jet source. By monitoring the growth in situ and by suitably adjusting the Ga/NH 3 flux ratio, smooth basal-plane-oriented GaN layers were grown on hydrogen-etched SiC substrates at temperatures in the range of 600–700°C. The growth proceeds via nucleation of small flat islands at the step edges of the 6H–SiC (0001) substrate surface. The islands increase in size with a lateral-to-vertical growth ratio of ~10 and eventually coalesce into a quasicontinuous layer. A highly defective substrate surface was found to be detrimental to the growth of flat buffer layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call