Abstract

The extracellular matrix (ECM) environment is known to play an important role in the process of various cell regulatory mechanisms. We have investigated the ability of 3-dimensional ECM geometries to induce morphological changes in cells. Bi-layer polymeric structures with submicron scale stripe patterns were fabricated using a two-step nano-imprinting technique, and the orientation angle (θ(α)) of the upper layer was controlled by changing its alignment with respect to the orientation of the bottom layer. When cells were grown on the mono-layer stripe structure with a single orientation, they elongated along the direction of the stripe pattern. On bi-layer polymer structures, the cell morphologies gradually changed and became rounded, with an increase of θα up to 90 degrees, but the polarities of these cells were still aligned along the orientation of the upper layer. As a result, we show that the polarity and the roundness of cells can be independently regulated by adjusting the orientation of 3-dimensional hierarchical ECM topography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.