Abstract

Noble metal nanoparticles (NPs) have unique optical, electronic and catalytic properties. Dome-like gold (Au) NPs having a size as small as [Formula: see text][Formula: see text]nm and a high density of [Formula: see text][Formula: see text]cm[Formula: see text] were prepared by very high frequency (VHF) hydrogen (H[Formula: see text] plasma-assisted radio frequency magnetron sputtering (RFMS) technique. The influence of RF power and sputtering time on the morphology and structure of islands-like Au nanostructures (NSs) were determined. Besides, optimum sputtering sample (OSS) was treated by VHF H2 plasma technique to fabricate dense Au NPs with great uniformity. Prepared samples were studied by atomic force microscope (AFM), energy dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscope (HR-TEM). AFM images of the sputtering samples show a good density of islands-like Au NSs ([Formula: see text][Formula: see text]cm[Formula: see text] with relatively homogeneous distribution. VHF H2 plasma treatment dependent alterations in the surface morphology of the OSS (shape, size, distribution, number density and average surface roughness) were clearly manifested in the AFM images. EDX spectra disclosed prominent Au peaks highly sensitive to the H2 plasma treatment. Our novel fabrication method may contribute to the development of Au NPs based nanodevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call