Abstract
ABSTRACT Machine learning techniques that perform morphological classification of astronomical sources often suffer from a scarcity of labelled training data. Here, we focus on the case of supervised deep learning models for the morphological classification of radio galaxies, which is particularly topical for the forthcoming large radio surveys. We demonstrate the use of generative models, specifically Wasserstein generative adversarial networks (wGANs), to generate data for different classes of radio galaxies. Further, we study the impact of augmenting the training data with images from our wGAN on three different classification architectures. We find that this technique makes it possible to improve models for the morphological classification of radio galaxies. A simple fully connected neural network benefits most from including generated images into the training set, with a considerable improvement of its classification accuracy. In addition, we find it is more difficult to improve complex classifiers. The classification performance of a convolutional neural network can be improved slightly. However, this is not the case for a vision transformer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.