Abstract
This study combines large volume three-dimensional reconstruction via focused ion beam scanning electron microscopy (FIB-SEM) with conventional scanning electron microscope (SEM) observation, automatic mineral identification and characterization system (AMICS) and large-area splicing of SEM images to characterize and classify the microscopic storage space distribution patterns and 3D pore structures of shales in the second member of the Paleogene Kongdian Formation (Kong 2) in the Cangdong Sag of the Bohai Bay Basin. It is shown that: (1) The Kong 2 Member can be divided into seven types according to the distribution patterns of reservoir spaces: felsic shale with intergranular micron pores, felsic shale with intergranular fissures, felsic shale with intergranular pores, hybrid shale with intergranular pores and fissures, hybrid shale with intergranular pores, clay-bearing dolomitic shale with intergranular pores, and clay-free dolomitic shale with intergranular pores. (2) The reservoir of the intergranular fracture type has better storage capacity than that of intergranular pore type. For reservoirs with storage space of intergranular pore type, the dolomitic shale reservoir has the best storage capacity, the hybrid shale comes second, followed by the felsic shale. (3) The felsic shale with intergranular fissures has the best storage capacity and percolation structure, making it the first target in shale oil exploration. (4) The large volume FIB-SEM 3D reconstruction method is able to characterize a large shale volume while maintaining relatively high spatial resolution, and has been demonstrated an effective method in characterizing the 3D storage space in strongly heterogeneous continental shales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.