Abstract

Purpose: The aim of this study was to produce poly(vinylpyrrolidone) (PVP) containingsilica nanofibers using electrospinning method from 10% PVP/EtOH solutions with differentmass concentration 0 and 30% of tetraethoxysilane. Sol-gel technique was used to obtainnanofiber membranes with high amount of inorganic phase. In the case when metal alkoxide,such as tetraethyl orthosilicate (TEOS) is mixed with an organic polymer, hydrolysis andcondensation reaction of TEOS occur in-situ with polymer matrix, which allows to fabricateorganic-inorganic hybrid structures with uniform dispersion.Design/methodology/approach: The examination of the morphology of the obtainedPVP/silicon dioxide nanofibers using scanning electron microscope (SEM) has been made.The chemical structure of produced nanostructures was investigated by Fourier - TransformInfrared spectroscopy (FTIR) and Energy Dispersive Spectrometry (EDX) to analyze theregular dispersion by examining types of bonds occurring between polymer matrix and SiO2phase.Findings: Results obtained in this paper shows that the mass concentration of thereinforcing phase in form of TEOS have an influence on the average diameter of nanofibersand with the increase of tetraethyl orthosilicate in solution nanofibers diameters decrease.Moreover, structural examination shows uniform dispersion of the reinforcing phase in hybridmaterials.Research limitations/implications: Uniform dispersion of the reinforcing phase insilica-containing PVP nanofibers gives the opportunity to make nanowires in calcinationprocess from such obtained fibrous mats and use in novel electrical devices.Originality/value: This paper describes an easy and more effective way of makingpolymer nanofibers with the content of silicon dioxide with the perspective way of makingsilica nanowires in the future from obtained hybrid nanofibers, so that this method canreplace commonly used nanowires growth processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.