Abstract
Morphological observations and physical measurement of (I) birefringence retardation, (2) mean fibre profile width, and (3) cell volume fraction were used to characterize chick hind limb extensor tendon development. Observations were made at days 7, 10, 14 and 17 embryologic and 1-1.5 post-hatching. Microanatomical observations illustrated a sequential development of tendon microanatomy consisting of (1) a uniaxial cellular framework with discontinuous collagen fibril bundles present in day 7 embryos; (2) a continuous network of birefringent collagen fibres, and early evidence of tendon fasciculation and crimp development by embryonic day 10; and (3) completion of the basic cytoarchitecture of tendon observed at day 14 of embryogenesis. These observations suggest that collagen deposition in tendon involves first a longitudinal and then a lateral organization of tendon fibroblasts. Associated with the progressive anatomical development of tendon was an increase in birefringence retardation, mean collagen fibre profile width, and a decrease in the cell volume fraction. Birefringence retardation per unit thickness, however, did not change. This suggested that the fibril packing density of the fibres remained constant, although the fibres were observed to increase in size. These results indicate that collagen fibrillogenesis in vivo can be quantitatively studied by measurement of the birefringence retardation using polarized light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.