Abstract

AbstractThe properties of blown polyethylene (PE) films depend on various factors, including crystallinity, morphology, and orientation, in addition to chemical composition. It has been shown that the optical properties are strongly influenced by surface morphology. In this work, non-contact atomic force microscopy (AFM) and polarized light microscopy (PLM) were used to visualize surface and bulk morphology. Various techniques, such as surface and line roughness, surface and line fractal dimension, pair-correlation function and nearest neighbor distance distribution function, are employed to quantify the description of morphology and to compare the morphological characteristics of a number of polyethylene (PE) films of commercial interest. A comprehensive quantitative analysis of surface topography has been performed. The co-monomer of the PE resins was found to play a significant role in the formation and the orientation of spherulite-like domains. The film cross-section microstructure has been evaluated qualitatively by using both AFM and PLM. However, quantitative analysis of bulk morphology cannot be obtained due to knife effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.