Abstract

Characterizing microstructural and transport properties of non-spherical particles, such as carbon nanofibers (CNF), is important for understanding their transport and deposition in human respiratory system and engineered devices such as particle filters. We describe an approach to obtain morphological information of non-spherical particles using a tandem system of differential mobility analyzer (DMA) and an electrical low-pressure impactor (ELPI). Effective density, dynamic shape factors (DSF), particle mass, and fractal dimension-like mass-scaling exponent of nanofibers were derived using the measured mobility and aerodynamic diameters, along with the known material density of CNF. Multiple charging of particles during DMA classification, which tends to bias the measured shape factors and particle mass toward higher values, was accounted for using a correction procedure. Particle mass derived from DMA–ELPI measurements agreed well with the direct mass measurements using an aerosol particle mass analyzer. Effective densities, based on mobility diameters, ranged from 0.32 to 0.67 g cm−3. The DSF of the CNF ranged from 1.8 to 2.3, indicating highly non-spherical particle morphologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call