Abstract

ABSTRACTNickel monosilicide (NiSi) nanowires (NWs) have been fabricated in a DC magnetron system by the Metal Induced Growth (MIG) method. The NW growing stages were sequentially observed by scanning electron microscopy. Deposited Ni on SiO2 coated Si wafers has been first grooved and agglomerated by thermal heating at 575 °C. In the sputtering procedure, Ni as a catalyst reacted with sputtered Si forming clusters. Nanowires were grown in the same directions on each cluster. Raman spectroscopy and Energy Dispersive Spectroscopy indicated the NW composition as NiSi. The linear propagating property of NWs was used to form self-assembled nanobridges (NBs) in trenched Si wafers. The affinity of NWs can be used on various substrate materials with less thermal damage. NiSi composed MIG-NBs are promising candidates as nanoscale contacts due to the features of low resistivity and low temperature processing giving less potential damage on fabricated structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call