Abstract

We observed the morphological features of the membrane systems (sarcoplasmic reticulum, transverse tubules and triads) involved with the excitation-contraction coupling in rat soleus and extensor digitorum longus muscle following two disuse protocols: denervation and immobilization. The immobilized positions were: maximum dorsal flexor (soleus were stretched and extensor digitorum longus were shortened), maximum plantar flexor (soleus were shortened and extensor digitorum longus were stretched), and midway between the dorsal flexor and plantar flexor. The arrangement of the membrane systems was disordered following both disuse conditions. Increases in transverse tubule network were apparent; there were clearly more triads than in normal fibres, and pentadic and heptadic structures (i.e., a close approximation of two or three transverse tubule elements with three or four elements of terminal cisternae of sarcoplasmic reticulum) were frequently appeared following both denervation and immobilization. The most notable difference between the influence of denervation and immobilization on the membrane systems is the time at which the pentads and heptads appeared. They appeared much earlier (1 week after denervation) in denervated than in immobilized (3 or 4 weeks after immobilization) muscle fibres. On the other hand, the frequency of pentads and heptads is clearly related to the fibre type (significantly higher in extensor digitorum longus) and to extent of atrophy. The different influences of immobilization in each leg position suggest that disuse, but with neurotrophic factor(s), influences on the membrane systems were affected by sarcomere length, and the neurotrophic factor(s) and muscle activity were not always necessary to form new membrane systems in disuse skeletal muscle fibres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call