Abstract
The cellular mechanisms of neuroplastic changes in the structure of motoneurons and neuropils of the oculomotor (III) nuclei in mice after a 30-day space flight and 7 days after landing were studied. The results showed that microgravity caused degenerative phenomena in neurons: a decrease in the number of terminal dendritic branches was found both after flight and after readaptation to Earth's gravity. In mice after the flight, the number of axodendritic synapses was less than in the control, and their number was not restored after the readaptation. The number of mitochondria in the motoneurons of animals after the flight also decreased and after the readaptation reached only the control value. In addition, a significant number of dark motorneurons were found in mice after readaptation, which indicates that degeneration was caused not only by microgravity, but also by a reaction to the landing of the biosatellite. On the contrary, in the trochlear nucleus, as we showed earlier (Mikheeva et al. in Brain Res 15(1795):148077. https://doi.org/10.1016/j.brainres.2022.148077 , 2022), after readaptation, the dendrites and synaptic contacts were restored, and mitogenesis is significantly enhanced. It has been suggested that morphological changes in the oculomotor nucleus may be the main cause of microgravity-induced nystagmus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.