Abstract

A three-step sequential detergent/salt extraction procedure was used in order to isolate three distinct subcellular fractions containing free (FP), cytoskeletal-bound (CBP) and membrane-bound polysomes (MBP), respectively, from Krebs II ascites cells (Vedeler et al., Mol Cell Biochem 100: 183-193, 1991). The purpose was to study changes in the distribution of polysomes in these three fractions during long-term incubation with insulin under either stationary conditions or in roller suspension culture. Insulin caused a redistribution of polysomes between FP, CBP and MBP fractions. The hormone appeared to promote an entry of ribosomes into polysomes both in CBP and MBP populations. When cells were grown in stationary culture in the presence of insulin and thus promoted to attach to the substratum and undergo morphological changes, a diversion of ribosomes from CBP into MBP was observed. The level of protein synthesis was apparently very high in this latter fraction since more than 70% of ribosomes were in polysomes. Morphological changes observed following insulin treatment were accompanied by a shift of certain proteins among subcellular fractions (for example actin and p35). The fibronectin content was about 20% higher in attached compared to non-attached cells. The results suggest that morphological changes induced by stimulation with insulin are associated with an increased activity of MBP, presumably reflecting a requirement for an increased synthesis of membrane proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.