Abstract

Actinobacillus pleuropneumoniae, which was formerly classified in the genus Haemophilus, is a pathogen causing swine pleuropneumonia. We found that aspoxicillin showed strong activity and that meropenem had better lytic activity against this pathogen. In the present study, we for the first time identified penicillin-binding proteins (PBPs) of A. pleuropneumoniae in order to elucidate the relationship between the antibacterial and lytic activities of beta-lactam antibiotics and affinities of the PBPs. The competitive assay using (3)H-labeled benzylpenicillin revealed seven PBPs in A. pleuropneumoniae; they were determined to be PBPs 1a, 1b, 2, 3, 4, 5, and 6, and the molecular masses of these PBPs were estimated to be 92, 80, 76, 72, 50, 44, and 30 kDa, respectively, by comparison with those of Haemophilus influenzae. Our detailed analysis of the affinities of the PBPs of A. pleuropneumoniae and of the bacterial lysis kinetics for several beta-lactam antibiotics revealed that the strong antibacterial activity of aspoxicillin against this strain could be related to the higher affinity of PBP 3 and that preferential inactivation of PBP 1b could cause rapid lysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.