Abstract
Soil saline-alkalization is expanding and becoming a serious threat to the initial establishment of plants in inland salt marshes on the Songnen Plain in Northeast China. Bolboschoenus planiculmis is a key wetland plant in this area, and its root tubers provide food for an endangered migratory Siberian crane (Grus leucogeranus). However, the survival of this plant in many wetlands is threatened by increased soil saline-alkalization. The early establishment of B. planiculmis populations under salt and alkaline stress conditions has not been well understood. The aim of this study was to investigate the response and adaption of the seedling emergence and growth of B. planiculmis to salt-alkaline mixed stress. In this study, B. planiculmis root tubers were planted into saline-sodic soils with five pH levels (7.31–7.49, 8.48–8.59, 9.10–9.28, 10.07–10.19, and 10.66–10.73) and five salinity levels (40, 80, 120, 160, and 200 mmol⋅L–1). The emergence and growth metrics, as well as the underlying morphological and physiological traits in response to salt-alkaline stress were explored for 2-week-old seedlings. The seedling emergence, growth, and leaf and root traits showed distinct responses to the pH and salt gradients. Under the lower saline-alkaline condition (pH ≤ 9.10–9.28 and salinity ≤ 80 mmol⋅L–1), the seedling growth was substantially facilitated or not significantly altered. Salinity affected the seedlings more significantly than alkalinity did. In particular, among the salt ions, the Na+ concentration had predominantly negative effects on all the morphological and physiological traits of the seedlings. Seedling emergence was more tolerant to salinity and, based on its observed close relationships with pH and the alkaline ion CO32–, was highly alkalinity-dependent. Moreover, the leaf area and photosynthetic rate, as well as the root surface area and tip number mainly accounted for the response of the seedling biomass to salt-alkaline stress. This is evidence of the adaption of B. planiculmis to saline-alkaline conditions largely due to the responses of its morphological and physiological traits. This study provides a mechanistic process-based understanding of the early seedling establishment of B. planiculmis populations in response to increased soil saline-alkalization in natural wetlands.
Highlights
Soil saline-alkalization is a major cause of land degradation worldwide (Ma et al, 2015)
The results indicated that seedling emergence was sensitive to salt-alkaline stress (Figure 1A)
Compared with CK, treatment A1 had a positive effect on the seedling emergence, and the emergence rate decreased as expected with increased salinity and alkalinity
Summary
Soil saline-alkalization is a major cause of land degradation worldwide (Ma et al, 2015). The ecological functions of this area have become severely degraded because of increased soil saline-alkalization. As a result, it has become an ecologically fragile area, and is an important area for maintaining national ecological security (Yang et al, 2010). Among the salts in soil, NaCl and Na2SO4 are the main neutral components and Na2CO3 and NaHCO3 are the main causes of saline-alkaline conditions (Yang et al, 2011). Salinity and alkalinity act as the key attributes affecting plant establishment, growth, and distribution in saline-alkaline soils (Silvestri et al, 2005; An et al, 2019)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.