Abstract

Quinoa (Chenopodium quinoa Willd.) is a genetically diverse crop that has gained popularity in recent years due to its high nutritional content and ability to tolerate abiotic stresses such as salinity and drought. Varieties from the coastal lowland ecotype are of particular interest due to their insensitivity to photoperiod and their potential to be cultivated in higher latitudes. We performed a field experiment in the southern Atacama Desert in Chile to investigate the responses to reduced irrigation of nine previously selected coastal lowland self-pollinated (CLS) lines and the commercial cultivar Regalona. We found that several lines exhibited a yield and seed size superior to Regalona, also under reduced irrigation. Plant productivity data were analyzed together with morphological and physiological traits measured at the visible inflorescence stage to estimate the contribution of these traits to differences between the CLS lines and Regalona under full and reduced irrigation. We applied proximal sensing methods and found that thermal imaging provided a promising means to estimate variation in plant water use relating to yield, whereas hyperspectral imaging separated lines in a different way, potentially related to photosynthesis as well as water use.

Highlights

  • IntroductionQuinoa (Chenopodium quinoa Willd.) is a genetically diverse crop that has gained popularity in recent years due to its high nutritional content and ability to tolerate abiotic stresses such as salinity and drought

  • We aimed to determine differences in yield and seed size among the selected coastal lowland self-pollinated (CLS) lines compared to cv Regalona, and to detect the underlying morphological and physiological traits that may contribute to yield and seed size determination under full and reduced irrigation

  • A significant treatment effect was observed for plant yield (p < 0.01), with plants receiving reduced irrigation (RI) yielding less than fully irrigated (FI) plants (Figure 1)

Read more

Summary

Introduction

Quinoa (Chenopodium quinoa Willd.) is a genetically diverse crop that has gained popularity in recent years due to its high nutritional content and ability to tolerate abiotic stresses such as salinity and drought. We found that several lines exhibited a yield and seed size superior to Regalona, under reduced irrigation. Plant productivity data were analyzed together with morphological and physiological traits measured at the visible inflorescence stage to estimate the contribution of these traits to differences between the CLS lines and Regalona under full and reduced irrigation. Quinoa grains are gluten free and highly nutritious, containing high-quality protein and all essential amino acids, vitamins, minerals and antioxidants (flavonoids and polyphenols) that contribute to the health-promoting effects of this food crop [3,4,5,6,7,8,9].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call