Abstract

We investigated morphological and photosynthetic responses of current-year seedlings of oak (Quercus crispula Blume) under high-light conditions. Quercus crispula seedlings were grown from seed in a relative photosynthetically active photon flux density (RPPFD) of 100, 10 or 2%. There was no difference in total dry mass between 100 and 10% RPPFD. At the end of the growing season, plants grown in 2% RPPFD had a lower total dry mass than those grown in 100 or 10% RPPFD. Seedlings grown in 100% RPPFD showed morphological acclimation, i.e., high root/shoot ratios and high leaf mass per area. De-epoxidation level in the xanthophyll cycle and activity of an antioxidant enzyme were highest in 100% RPPFD, but total chlorophyll concentration and photosynthetic rate were highest in 10% RPPFD. These results indicate that excess photons were generated in 100% RPPFD, leading to increased capacities for dissipation of received light energy through the xanthophyll cycle and for scavenging of reactive oxygen species through the water-water cycle. Nevertheless, a midday decrease in dark-adapted quantum yield of photosystem II (F(v)/F(m)) indicated that seedlings grown in 100% RPPFD were suffering from photoinhibition. We conclude that Q. crispula current-year seedlings have high morphological acclimation to high light but that photosynthetic efficiency cannot be maintained under high-light conditions even with a photoprotection system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.