Abstract

Marine ecosystems provide a wide variety of diverse habitats that frequently promote migration and ecological adaptation. The extent to which the geographic distribution of marine organism has reshaped by human activities remains underappreciated. The limitations intrinsic to morphology-based identification systems have engendered an urgent need for reliable genetic methods that enable the unequivocal recognition of fish species, particularly those that are prone to overexploitation and/or market substitution. In the present study, however, an attempt has been taken to identify two locally adapted fish species, Siganus sutor (Valenciennes, 1835) and Seriolina nigrofasciata (Ruppell, 1829) of order Perciformes, which happens to be the first record in Odisha coast, Bay of Bengal. The diagnostic characteristics of Siganus sutor are: dorsal fin XIII-10, anal fin VII-9, pectoral fin 15, pelvic fin II-3, while that of Seriolina nigrofasciata dorsal fin VI-I-35, anal fin I-17, pectoral fin 16, pelvic fin 5. All COI barcodes generated in this study were matched with reference sequences of expected species, according to morphological identification. Bayesian and likelihood phylogenetic trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at the species level. The phylogeographic studies based on haplotype network and migration rates suggest that both the species were not panmitic and the high-frequency population distribution indicates successful migration. The result of this study provides an important validation of the use of DNA barcode sequences for monitoring species diversity and changes within a complex marine ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call