Abstract
Columnar nanostructures (CNS) were grown by plasma chemical synthesis at a gas mixture pressure of 90% He + 10% O2 200 Pa and substrate temperatures of 340K (sample 1) and 370K (sample 2). The effect of substrate temperature on the morphological, crystalline, magnetic, and impedance properties of CNS was studied. Scanning microscopy (SEM) showed that the morphology of CNS varies significantly from dendritic to wire structure. Energy dispersive X-ray spectroscopy (EDS) showed a change in the stoichiometry of the deficiency samples (Cu52O48) to an excess of oxygen (Cu42O58). X-ray diffraction analysis (XRD) and Rietveld fitting showed that samples 1 and 2 have a monoclinic crystal structure with a large proportion of the amorphous phase, the size of coherent scattering regions (CSR) was 26 nm (sample 1). Magnetic measurements showed that sample 1 exhibits ferromagnetic behavior, and at 6 K a magnetic hysteresis loop appears. Sample 2 from 250 K to room temperature exhibits diamagnetic behavior. A connection was found between the appearance of diamagnetism and a jump in the dielectric constant of sample 2. An assumption was made about the electron-ionic nature of the diamagnetism of sample 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.