Abstract

BackgroundThe microbiome provides multiple benefits to animal hosts that can profoundly impact health and behavior. Microbiomes are well-characterized in humans and other animals in controlled settings, yet assessments of wild bird microbial communities remain vastly understudied. This is particularly true for pelagic seabirds with unique life histories that differ from terrestrial bird species. This study was designed to examine how morphological, genetic, environmental, and social factors affect the microbiome of a burrow-nesting seabird species, Leach’s storm petrel (Oceanodroma leucorhoa). These seabirds are highly olfactory and may rely on microbiome-mediated odor cues during mate selection. Composition and structure of bacterial communities associated with the uropygial gland and brood patch were assessed using 16S rRNA amplicon-based Illumina Mi-Seq analysis and compared to burrow-associated bacterial communities. This is the first study to examine microbial diversity associated with multiple body sites on a seabird species.ResultsResults indicate that sex and skin site contribute most to bacterial community variation in Leach’s storm petrels and that major histocompatibility complex (MHC) genotype may impact the composition of bacterial assemblages in males. In contrast to terrestrial birds and other animals, environmental and social interactions do not significantly influence storm petrel-associated bacterial assemblages. Thus, individual morphological and genetic influences outweighed environmental and social factors on microbiome composition.ConclusionsContrary to observations of terrestrial birds, microbiomes of Leach’s storm petrels vary most by the sex of the bird and by the body site sampled, rather than environmental surroundings or social behavior.

Highlights

  • The microbiome provides multiple benefits to animal hosts that can profoundly impact health and behavior

  • Within each sex, observed operational taxonomic units (OTUs) richness was similar between the uropygial gland and brood patch body locations

  • Between-sex bacterial communities were structurally different at the brood patch sites and uropygial glands

Read more

Summary

Introduction

The microbiome provides multiple benefits to animal hosts that can profoundly impact health and behavior. Microbiomes are well-characterized in humans and other animals in controlled settings, yet assessments of wild bird microbial communities remain vastly understudied. This is true for pelagic seabirds with unique life histories that differ from terrestrial bird species. Microbiomes powerfully impact animal health and behavior [1, 2] These symbiotic microbial networks have been primarily characterized in humans and other animals in controlled settings, but the relationship between microorganisms and wild animals, in nonmammalian species, remains vastly understudied [3]. It is unknown what factors contribute to seabird microbiomes and the microbial communities they disperse

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call