Abstract

The regenerative capacity of mdx Extensor Digitorum Longus (EDL) muscle after iterative muscle crush injuries was examined and compared with that of age-matched control C57BL/10 mice. Muscle crush injuries were performed at 8 weeks and repeated at 12 and 16 weeks. Contralateral non-crushed EDLs from mdx and C57BL/10 mice were used as internal controls for histopathology, histoenzymology, morphometry and for the study of the contractile properties. Morphological examinations were performed at 12, 16 and 20 weeks, respectively one month after a single, a second or a third crush. Contractile properties were studied at 12 and 20 weeks. By 20 weeks, no difference in the number of fibres with internal nuclei could be observed between crushed EDL from both strains, and non-crushed mdx EDL; the area and the diameter of crushed EDL from mdx mice were, respectively, 1.5- and 1.2-fold higher than the ones from crushed EDL from C57BL/10 strain. By 20 weeks, diameter distribution of crushed EDL muscles from C57BL/10 mice were shifted towards smaller fibre diameter, whereas in mdx mice, diameter distribution of crushed EDL muscles paralleled that of non-crushed EDL muscles. By 20 weeks, crushed mdx and C57BL/10 EDL muscles produced 77 and 47% of normalized tetanus tension respectively of non-crushed mdx and C57BL/10 EDL muscles. Following crush injury, both 12- and 20-week mdx and C57BL/10 EDL exhibited a slowed time to peak (TTP) and half-relaxation time ( H1 2R ) of twitch. There was no difference in posttetanic potentiation between the different groups. Crushed EDL of both strains showed an increased resistance to fatigue, compared to the non-crushed controls. The present study provides morphological and functional evidence for the greater recovery of mdx muscle compared to C57BL/10 muscle following iterative crush injury; however, the recovery does not completely prevent the appearance of necrosis/regeneration features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.