Abstract

Lead (Pb) is a non-essential, highly toxic, and persistent element widely recognized as one of the most concerning pollutants. It is listed on the Priority List of Hazardous Substances. Widespread environmental contamination from Pb is a serious issue for human health and wildlife. In fish, Pb mainly accumulates in the liver, which is a key component for metal detoxification and excretion processes. In this study, we investigated, for the first time, the morphological and functional injuries induced in zebrafish (Danio rerio) liver by two very low and environmentally relevant concentrations of Pb (2.5 and 5 μg/L) after 48, 96, and 192 h of exposure. We observed significant histological alterations in all the exposed samples, and it was demonstrated that the extent of injuries increased with dose and exposure time. The most common modifications observed were congestion of blood vessels and sinusoids, cytoplasmic vacuolizations, parenchyma dyschromia, and macrophage proliferation. Pb administration also resulted in a significant increase in lipid content and the upregulation of key genes that are involved in metal detoxification (mtf1) and the defensive response against oxidative stress (sod1 and cat). We show that even very low doses of Pb can disrupt liver morphology and function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call