Abstract
BackgroundThe dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43) and androgen receptor (AR) expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis.MethodsFirst two experimental groups received flutamide prenatally on gestational days 20-28 and 80-88 (GD20 and GD80) and further two groups were exposed to flutamide postanatally on days 2-10 and 90-98 after birth (PD2 and PD90). Epididymides were collected from adult boars. Routine histology was performed using hematoxylin-eosin staining. The expression of Cx43 and AR were analyzed using immunohistochemistry and Western blotting. Both analyses were supported by quantitative approaches to demonstrate the variations of the expression levels following the treatment. Apoptotic cells were identified using TUNEL assay.ResultsHistological examination revealed differences in epididymal morphology of flutamide-exposed boars when compared to controls. Scarce spermatic content were seen within the corpus and cauda lumina of GD20, PD2 and PD90 groups. Concomitantly, frequency of epididymal cell apoptosis was significantly higher (p < 0.05) after exposure to flutamide at GD20. Moreover, in GD20, PD2, and PD90 groups, significantly lower AR expression (p < 0.05) was found in the principal and basal cells of the corpus and cauda regions, while in the stromal cells AR expression was significantly reduced (p < 0.05) along the epididymal duct. Concomitantly, a decrease in Cx43 expression (p < 0.05) was noticed in the stromal cells of the cauda region of GD20 and PD2 groups. This indicates high sensitivity of the stromal cells to androgen withdrawal.ConclusionsThe region-specific alterations in the epididymis morphology and scarce spermatic content within the lumina of the corpus and cauda indicate that flutamide can induce delayed effects on the epididymal function of the adult boar by decrease in AR protein levels that results in altered androgen signaling. This may cause disturbances in androgen-dependent processes including Cx43 (de)regulation, however, we can not exclude the possibility that in response to flutamide decreased Cx43 expression may represent one mechanism responsible for functional disturbance of the boar epididymis.
Highlights
The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions
Of the group of boars, in the caput and corpus epididymis the principal cells were columnar in shape and became slightly lower in the cauda region (Figure 1A-O)
Scarce spermatic content were seen in the corpus and cauda of GD20, PD2 and PD90 groups (Figure 1F, K-L, N-O)
Summary
The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. No information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Throughout the length of the ductus epididymis communication systems are based on a secretion of hormones [2]. Their cooperation determines the appropriate luminal microenvironment that is formed for the functional maturation, storage and protection of spermatozoa [3,4]. Scarce information is available regarding possible effects of anti-androgens on the integral proteins that build intercellular junctions in the male [7,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.