Abstract
The effect of residual solvent and copolymer ratio on the in vitro degradation and drug release behavior of a bioabsorbable polymer/drug system was investigated in an effort to understand and develop the use of these excipients for controlled drug delivery devices. Sirolimus-containing poly(lactide-co-glycolide) (PLGA) discs were fabricated by a solution-casting method using dimethyl sulfoxide (DMSO) as the solvent. The residual DMSO was removed from a set of discs by supercritical carbon dioxide extraction, and reflections of crystalline sirolimus were observed in the wide-angle X-ray scattering profile observed after extraction. A correlation was not observed between the extent of drug crystallization and extraction conditions and copolymer ratio. Mass loss, molecular weight, and sirolimus release were monitored during an in vitro study of the oven-dried neat PLGA, sirolimus-containing PLGA, and extracted sirolimus-containing PLGA discs during 56 days. The sirolimus-containing PLGA discs with residual DMSO exhibited a faster sirolimus release rate compared to the extracted discs. The residual DMSO facilitated release of sirolimus. The discs that contained PLGA with higher glycolide content, particularly 50% glycolide, degraded faster and exhibited faster sirolimus release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.