Abstract

Fine-resolution morphological mapping aided by ortho-images and digital elevation model from Chandrayaan-1 Terrain Mapping Camera and 3D GIS visualization has revealed scientifically diverse characteristics of lunar surface features, due to unique topographical significance of morphological features, i.e., highlands, basaltic plains and craters, which are very well manifested in 3D GIS environment. The distribution of various morphological features provides insights into the sequential evolution and surface process of the study area. The highland region represented by the Fra Mauro formation in the study area exhibits high albedo with distinct topography. The northern part of the study area falls in the southern part of major basin Serenitatis, and exhibits the dark mantling material with low albedo. The morphological features, i.e., wrinkle ridges and rilles, indicate volcanic flow events consequence to the loading of basaltic materials in the interior of the Serenitatis and Imbrium Basins and related extensional failure. The Manilius crater, which occupies the central part of the study area, is a complex crater with a central peak and asymmetric ejecta deposit. The ages of the major surficial features were determined based on size, frequency and distribution pattern of craters using crater size-frequency distribution model. Age of the Fra Mauro highland, Manilius crater, Mare Serenitatis and Mare Vaporum is, respectively, 3.9, 3.5, 2.8 and 1.7 Ga years, indicating that the lunar surface of this region evolved in Imbrian to Eratosthenian age of lunar selenological timescale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call