Abstract

Advances in the culture of mineralizing growth plate chondrocytes provided an opportunity to study endochondral calcification under controlled conditions. Here we report that these cultures synthesize large amounts of proteins characteristically associated with mineralization: type II and X collagens, sulfated proteoglycans, alkaline phosphatase, and the bone-related proteins, osteonectin and osteopontin. Certain chondrocytes appeared to accumulate large amounts of Ca2+ and Pi during the mineralization process: laser confocal imaging revealed high levels of intracellular Ca2+ in their periphery and X-ray microanalytical mapping revealed the presence of many Ca(2+)- and Pi-rich cell surface structures ranging from filamentous processes 0.14 +/- 0.02 microns by 0.5-2.0 microns, to spherical globules 0.70 +/- 0.27 microns in diameter. Removal of organic matter with alkaline sodium hypochlorite revealed numerous deposits of globular (0.77 +/- 0.19 micron) mineral (calcospherites) in the lacunae around these cells. The size and spatial distribution of these mineral deposits closely corresponded to the Ca(2+)-rich cell surface blebs. The globular mineral progressively transformed into clusters of crystallites. Taken with earlier studies, these findings indicate that cellular uptake of Ca2+ and Pi leads to formation of complexes of amorphous calcium phosphate, membrane lipids, and proteins that are released as cell surface blebs analogous to matrix vesicles. These structures initiate development of crystalline mineral. Thus, the current findings support the concept that the peripheral intracellular accumulation of Ca2+ and Pi is directly involved in endochondral calcification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.