Abstract

Genetically transformed roots (hairy roots) and callus tissue of skullcap (Scutellaria andrachnoides Vved.) were for the first time introduced in the in vitro culture. S. andrachnoides is the endemic plant of the Kyrgyzstan. These cultures were characterized by active and stable growth in the hormone-free liquid Gamborg nutrient medium. The growth rate of undifferentiated callus tissue was higher than that of hairy roots, which were the source of this callus. The composition of secondary metabolites in hairy roots, callus tissue, and also the roots of seedlings and adult S. andrachnoides plants was analyzed. It was found that S. andrachnoides hairy roots and callus culture retained the ability for the synthesis of flavones typical for the roots of intact plants. Substantial quantitative differences in secondary metabolites were observed between the roots of juvenile and adult plants. In the seedling roots, which like hairy roots have no secondary thickening, wogonoside, a wogonin glucuronide, predominated among flavones. In the roots of adult plants growing due to the secondary thickening, balcalin, a baicalein glucuronide, was a dominating flavon. It is proposed to use the large-scale in vitro cultivation of roots and especially the rapidly growing callus tissue of S. andrachnoides with a profitable content of only one group of flavones for the development of the biotechnological method for producing wogonin and creating on its basis a new drug — a valuable anticancer agent of plant origin with selective cytotoxic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call