Abstract
An expression of plants response to light availability is their shade tolerance which refers to the capacity of a given plant to tolerate low light levels. Survival in a shaded environment can determine phenotypic consequences at morphological and/or physiological levels and such changes may be crucial to survive in heterogeneous and variable conditions. However, the potential plastic response of a given plant trait may be large but the observed plasticity may be lowered by resource limitations or environmental stress factors. In this context, the aim of this research was to analyze morphological, anatomical and physiological leaf traits variations of Sesleria nitida Ten. growing in different light conditions. In particular, plants growing in open (PO) and shade (PU) conditions were analyzed. The results show a 35% higher specific leaf area (SLA) in PU than in PO due to a 94% larger leaf area (LA). The higher height and width of the central and the major lateral vascular bundle in PO than in PU contribute to a higher net photosynthesis (PN) in sun than in shade conditions. Moreover, the 33% higher ratio between respiration (RD) and PN (RD/PN) in PU than in PO highlights the greater proportion of the carbon consumed by RD in the shade population requiring a greater metabolic effort for growth and maintenance. S. nitida in the shaded environment might be favored by the soil pH being a neutro-basophilous species and the larger soil water content (SWC) and mineral content contributing to maintain a positive carbon balance in this limiting condition. The plasticity analysis for open vs. the understory plants (mean plasticity index = 0.32) highlights the leaf trait variations useful to maintain a positive carbon balance where light availability is the main limiting factor. Knowledge of the capacity of S. nitida to first colonize and then modify its phenotype in response to the shade condition can contribute to a better understanding of its ecology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.