Abstract
The complex morphological structure of the left ventricular endocardial surface and its relation to the severity of arterial stenosis has not yet been thoroughly investigated due to the limitations of conventional imaging techniques. By exploiting the recent developments in Multirow-Detector Computed Tomography (MDCT) scanner technology, the complex endocardial surface morphology of the left ventricle is studied and the cardiac segments affected by coronary arterial stenosis localized via analysis of Computed Tomography (CT) image data obtained from a 320-MDCT scanner. The non-rigid endocardial surface data is analyzed using an isometry-invariant Bag-of-Words (BOW) feature-based approach. The clinical significance of the analysis in identifying, localizing and quantifying the incidence and extent of coronary artery disease is investigated. Specifically, the association between the incidence and extent of coronary artery disease and the alterations in the endocardial surface morphology is studied. The results of the proposed approach on 15 normal data sets, and 12 abnormal data sets exhibiting coronary artery disease with varying levels of severity are presented. Based on the characterization of the endocardial surface morphology using the Bag-of-Words features, a neural network-based classifier is implemented to test the effectiveness of the proposed morphological analysis approach. Experiments performed on a strict leave-one-out basis are shown to exhibit a distinct pattern in terms of classification accuracy within the cardiac segments where the incidence of coronary arterial stenosis is localized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.