Abstract
Hyperpolarization-activated cation currents (I(h)) have been identified in neurons in the central nervous system, including the retina. There is growing evidence that these currents, mediated by the hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN), may play important roles in visual processing in the retina. This study was conducted to identify and characterize HCN1-immunoreactive (IR) bipolar cells by immunocytochemistry, quantitative analysis, and electron microscopy. The HCN1-IR bipolar cells were a subtype of OFF-type cone bipolar cells and comprised 10% of the total number of cone bipolar cells. The axons of the HCN1-IR cone bipolar cells ramified narrowly in the border of strata 1 and 2 of the inner plexiform layer (IPL). These cells formed a regular distribution, with a density of 1,825 cells/mm(2) at a position 1 mm ventral to the visual streak, falling to 650 cells/mm(2) in the ventral periphery. Double-labeling experiments demonstrated that their axons stratified narrowly within and slightly proximal to the OFF-starburst amacrine cell processes. In the IPL, they were presynaptic to amacrine cell processes. The most frequent postsynaptic dyads formed of HCN1-IR bipolar cell axon terminals are pairs composed of both amacrine cell processes. These results suggest that these HCN1-IR cone bipolar cells might be the same as the DAPI-Ba1 bipolar population, and might therefore be involved in a direction-selective mechanism, providing inputs to the OFF-starburst amacrine cells and/or the OFF-plexus of the ON-OFF ganglion cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.