Abstract

It was revealed that regeneration of the lateral olfactory tract (LOT) occurred in developing rats and the regenerated olfactory system was functional 4 weeks after transection. The aim of this study was to determine the earliest onset of functional recovery in LOT-injured rats and to quantify regenerated nerve components with functional correlation. Neonatal rats on postnatal day (P) 2 were subjected to unilateral transection of the left LOT and underwent unilateral removal of the right olfactory bulb on P11. Functional recovery of the tract injury was assessed by the suckling capability, which can be achieved by olfaction. Suckling capability was observed on P12 in most neonatally LOT-transected pups. Rat pups were subjected to unilateral transection of the left LOT on P2, and received injections of biotinylated dextran amine (BDA) into the bilateral olfactory bulb on P5 to quantify normal and regenerated nerve components in the olfactory cortices at the level of the olfactory tubercle. BDA(+) areas and density indices of the olfactory cortices in the neonatally LOT-transected P12 pups were 11.05×105μm2 and 0.35 on the normal right side and 4.34×105μm2 and 0.21 on the transected left side. We concluded that functional recovery of the LOT-transected neonatal rats occurred as early as 10days after tract transection and that areas and densities of regenerated nerve components essential for functional recovery were approximately 40% and 60% of the age-matched normal values in the olfactory cortices at the level of the olfactory tubercle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call