Abstract

The response of periodontal ligament cells (PDLC) from adult subjects in comparison to those obtained from younger ones to mechanical forces has been a matter of interest recently because of induced senescent changes. This study evaluated and compared cell surface changes and activity, integrin beta 1, and β-actin mRNA fold changes as well as klotho protein secretion capabilities of PDLC from young and adult donors before and after subjecting to orthodontic forces. A total of 40 subjects with bimaxillary dentoalveolar protrusion requiring extraction of first premolars for orthodontic treatment were selected and divided into two groups. Force ranging from 80 to 90 g was applied to maxillary first premolars and extraction was carried out at two different time periods-pre-treatment (control group) and 28 days after force application (experimental group). Periodontal ligament was obtained, and cell surface changes and activity were observed with atomic force microscopy (AFM) and fluorescent tagging. mRNA fold change of integrin beta-1 and β-actin mRNA, as well as beta-galactosidase assay, was performed, and levels of klotho protein were evaluated. AFM nanoindentation and fluorescent tagging indicated increased surface morphological changes in younger cells compared to adult ones. We observed a decrease in integrin beta 1 but an increase in β-actin mRNA levels in PDLC obtained from younger subjects compared to adults, while an increase was observed in SA-β-GAL from adult cells. The level of klotho protein was lower in adult cells in comparison to younger ones. Large sample studies are required to find out a variation in aging characteristics between young and adult PDLC. The study observed significant differences between PDLC obtained from younger and adult subjects in response to orthodontic force application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.