Abstract
BackgroundThe objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation.ResultsTwenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet (containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for 7 (G7, n = 5), 14 (G14, n = 5) and 28 d (G28, n = 5), respectively. In contrast, the control group (CON, n = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased (P < 0.001) the ruminal pH, and increased the concentrations of ruminal total volatile fatty acid (linear, P = 0.001), butyrate (linear, P < 0.001), valerate (quadratic P = 0.029) and the level of IGF-1 (quadratic, P = 0.043) in plasma. The length (quadratic, P = 0.004), width (cubic, P = 0.015) and surface of the ruminal papillae (linear, P = 0.003) were all enlarged after 14 d of HG diet feeding. HG feeding cubically increased the number of cell layers forming the stratum corneum (SC, P < 0.001) and the thickness of the SC (P < 0.001) and stratum basale (P < 0.001). The proportion of basal layer cells in the RE decreased (linear, P < 0.001) in the G0/G1-phase, but it increased linearly (P = 0.006) in the S-phase and cubically (P = 0.004) in the G2/M-phases. The proportion of apoptosis cells in G7, G14 and G28 was reduced compared to the CON (quadratic, P < 0.001). HG diet feeding linearly decreased the mRNA expression of Cyclin E1 (P = 0.021) and CDK-2 (P = 0.001) and (P = 0.027) the protein expression of Cyclin E1. Feeding an HG diet linearly increased the mRNA expression of genes IGFBP-2 (P = 0.034) and IGFBP 5 (P < 0.009), while linearly decreasing (P < 0.001) the IGFBP 3 expression. The expression of cell apoptosis gene Caspase 8 decreased (quadratic, P = 0.012), while Bad mRNA expression tended to decrease (cubic, P = 0.053) after HG feeding.ConclusionsThese results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.
Highlights
The objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation
Sheep assigned to CON (n = 5), G7 (n = 5), G14 (n = 5) and G28 (n = 5) received a high-grain diet for 0, 7, 14 and 28 d, respectively
In summary, the present study revealed that HG feeding resulted in changes in the mRNA expression of Cell cycle protein (Cyclin)
Summary
The objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation. Diets rich in rapidly fermentable carbohydrates are typically used to increase the energy intake and efficiency of meat as well as milk production [1]. Increased volatile fatty acid (VFA) production and reduced ruminal pH impose a challenge to the absorption and metabolism of the ruminal epithelium (RE) [2, 3]. Previous studies revealed that RE adaptation to highly fermentable diets entails morphological adaptations associated with tissue proliferation [4, 5]. There is a paucity of data regarding RE proliferation in feedlot ruminants in spite of the fact that dietary transition from backgrounding diets to finishing diets should elicit such a response [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.