Abstract

Personalized cardiac models have become a crucial component of the clinical workflow, especially in the context of complex cardiovascular disorders, such as valvular heart disease. In this chapter we present a comprehensive framework for the patient-specific modeling of the valvular apparatus and heart chambers from multi-modal cardiac images. An integrated model of the four heart valves and chambers is introduced, which captures a large spectrum of morphologic, dynamic and pathologic variations. The patient-specific model parameters are estimated from four-dimensional cardiac images using robust learning-based techniques. These include object localization, rigid and non-rigid motion estimation, and surface boundary estimation from dense 4D data (TEE, CT) as well as regression-based techniques for surface reconstruction from sparse 4D data (MRI). Clinical applications based on the patient-specific modeling approach are proposed for decision support in Transcatheter Aortic Valve Implantation and Percutaneous Pulmonary Valve Implantation while performance evaluation is conducted on a population of 476 patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.