Abstract

Background/Purpose Previous studies have shown small intestinal submucosa (SIS) can be used as biodegradable scaffolds in tissue engineering small intestine. The purpose of this study is to evaluate the regeneration of neointestine and its morphology using SIS. Methods A 2-cm tubular SIS graft from Sprague Dawley rat donors was interposed in the middle of a 6-cm ileal Thiry-Vella loop of Lewis rats, which was used to construct an ileostomy. The grafts were harvested at each of the time points ranging from 2 weeks to half a year after implantation, and native small intestine and grafts were investigated for morphology using histology and immunohistochemistry. Results At the early postoperative period, SIS grafts were colonized by numerous inflammatory cells. A mucosal epithelial layer began to line the luminal surface of the graft by 4 weeks, and by 12 weeks, the luminal surface was covered completely by a layer of neomucosa. Neomucosa with typical small bowel morphology was characterized by a columnar epithelial cell layer with goblet cells, Paneth cells, absorptive enterocytes, and enteroendocrine cells. Significant differences between neomucosa by 12 weeks and 24 weeks in the measurements of mucosal thickness, villus height, and crypt depth were found. The outer walls of SIS grafts were composed of distinct bundles of well-formed smooth muscle–like cells with some fibrovascular tissue. Conclusions This initial study suggests that tissue engineering neointestine using SIS can develop structural features of the normal intestine. Small intestinal submucosa might be a viable material in the creation of neointestine for patients suffering short bowel syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call