Abstract
Further investigations of the epithelial and mesothelial basal lamina of the duodenum of Xenopus laevis during metamorphosis were performed by means of scanning electron microscopy (SEM) and histochemical techniques using polyethyleneimine (PEI) to demonstrate anionic sites as well as light- and transmission-electron-microscopic methods involving morphometric analysis. The basal lamina of the duodenal epithelial cells was smooth, and it was occasionally curved along the processes of the epithelial cells (stages 56-59). The basal lamina became thicker by folding, and the thickness of the folded basal lamina exceeded 1 micron (stages 60-62). Subsequently, the folded basal lamina disappeared gradually and became almost smooth again and consisted of only one layer (stages 63-66). After removing the epithelium by boric acid, SEM revealed that the small ridges of the basal lamina protruded like a mesh-work into the luminal side, and the luminal surface of the basal lamina became smooth at later stages of the metamorphic climax. The electron-dense granules of PEI-positive material were localized at both sides of the lamina densa at regular intervals (80-100 nm). The basal lamina of the mesothelial cells was almost smooth at stages 56-59 and started to show occasional slight folding. This folding became continuous and deeper (stages 60-62). The folded mesothelial basal lamina disappeared except for the cell-associated basal lamina and became smooth again at later stages of the metamorphic climax (stages 63-66). These morphologic changes of the basal lamina observed in the epithelium and mesothelium may be induced by common factors. We suggest that physical changes in the small intestine involving the shortening and narrowing should be a main factor to cause these changes in the basal lamina. Furthermore, morphometric analysis proposed that the basal lamina becomes more complex by adding newly synthesized basal lamina material, especially in the epithelium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.