Abstract

IntroductionInformation on the nerve fibers innervating the dental pulp is crucial for understanding dental pain and hypersensitivity. This study investigated the morphologic differences of parvalbumin (PV)-positive (+) myelinated fibers in 3 different regions of the human dental pulp. MethodsLight and electron microscopic immunohistochemistry for parvalbumin, a marker for myelinated fibers, and quantitative analysis were performed in the apical root, core of coronal pulp, and peripheral pulp of human premolar teeth. ResultsAbout 40% of the myelinated fibers in the apical root pulp became unmyelinated in the core of the coronal pulp, and virtually all the remaining fibers became unmyelinated at the peripheral pulp. The size of myelinated axons decreased from root to peripheral pulp. PV+ axons showed extensive axonal varicosities in the peripheral pulp. ConclusionsThese findings suggest that the myelinated fibers innervating the human dental pulp undergo extensive morphologic change in the extrapulpal region and in the coronal and peripheral pulp, and that PV-mediated regulation of calcium concentration and its downstream events may occur primarily in axonal varicosities in the peripheral pulp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.