Abstract
The complex vertebrate skeleton depends on regulated cell activities to lay down protein matrix and mineral components of bone. As a distinctive vertebrate characteristic, bone is a storage site for physiologically-important calcium ion. The extracellular calcium-sensing receptor (CaSR) is linked to homeostatic regulation of calcium through its expression in endocrine glands that secrete calcium homeostatic hormones, in Ca2+- and ion-transporting epithelia, and in skeleton. Since CaSR is restricted in its presence to the chordate–vertebrate evolutionary lineage, we propose there to be important functional ties between CaSRs and vertebrate skeleton in the context of that group's characteristic form of calcium-mineralized skeleton. Since little is known about CaSR in the skeletal biology of non-mammalian vertebrates, reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization and immunohistochemistry were applied to adult and embryonic zebrafish to reveal CaSR transcript and protein expression in several tissues, including, among these, chondrocytes and developing bone and notochord as components in skeletal development. Morpholino oligonucleotide (MO) knockdown technique was used to probe CaSR role(s) in the zebrafish model system. By RT-PCR assessment, injection of a splice-inhibiting CaSR MO reduced normally-spliced Casr gene transcript expression measured at 2days postfertilization (dpf). Corresponding to the knockdown of normally-spliced mRNA by the CaSR MO, we observed a morphant phenotype characterized by stunted growth and disorganization of the notochord and axial skeleton by 1dpf. We conclude that, like its critically important role in normal bone development in mammals, CaSR is essential in skeletogenesis in fishes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.