Abstract

The morphogenesis of the glomerular filtration apparatus during pre- and postnatal development in the rodent involves the coordinated assembly of two closely apposed but morphologically different extracellular matrices, the glomerular capillary basement membrane and the mesangial matrix. The cellular origin of these matrices is known to be distinct and complex; however, the mechanisms by which these matrices are assembled during morphogenesis are not entirely understood. It has been shown that in the earliest stages of glomerular morphogenesis the nascent glomerular basement membrane exists as a four-layered structure, the product of both the visceral epithelium and capillary endothelium. During the latter stages of glomerular development, the quadrilaminar structure becomes a trilaminar basement membrane, the event thought to occur by fusion of closely apposed basement membrane layers. In subsequent stages of maturation and throughout the life of the animal, the visceral epithelial cells, which line the periphery of the glomerular capillary, are the primary source of newly synthesized basement membrane material. The mesangial matrix, which lacks the specific organization of a basement membrane, first occurs in the developing glomerulus as a diffuse matrix central to the developing glomerular capillaries. During glomerular maturation the mesangial matrix undergoes a compaction/arborization coincident with the ramification of the vascular histoarchitecture of the glomerular tuft. Recent advances in the cell biology of basement membrane now demonstrate that there is a divergence in isoforms of the molecules that comprise the glomerular capillary basement membrane and mesangial matrices during development, possibly coincidental with functional specialization during the process of glomerular maturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.