Abstract

Pancreatic duct cells secrete water and ions, bicarbonate in particular. The study of these secretion processes is hindered by the unavailability of human pancreatic tissue. In this study, pancreatic human cells of the Capan-1 cell line were employed to investigate secretion in vitro. These cells are of ductal origin because in standard culture they polarize spontaneously forming domes in the culture dishes, indicating the existence of transepithelial exchange of water and electrolytes. In culture in suspension, Capan-1 cells form hollow spheroids bounded by a cell monolayer in a radial organization. These three-dimensional structures could be maintained in culture for more than 140 days. In young cultures, the cells of these spheroids grew rapidly (mitotic index = 9.2% on Day 2). Their cytologic features were analyzed by immunocytochemical, cytoenzymatic methods, and by electron microscopy. We showed that they are: a) polarized with an apical pole facing the culture medium; b) organized in a monolayer; c) bound by tight junctions and desmosomes; d) characterized by a particular distribution of enzyme systems known to play a role in ion exchanges, with placental-type alkaline phosphatases and carbonic anhydrases IV on their apical membranes and Ca(2+)-ATPases on their basolateral membranes. Crystalline structures were detected histochemically in the closed cavities and in the intercellular spaces of the spheroids. X-ray emission spectroscopy and electron diffraction showed that they consisted of calcium phosphate in an apatite structure. They were assumed to derive from a raised concentration of Ca2+ and phosphate ions under the impermeable monolayer of the spheroids. In addition, numerous cells secreted M1 gastric-type mucins, and acquired the ability to produce colonic-type M3 mucins. These hollow spheroids swelled during the culture period. Taken together these results suggest that the Capan-1 cells organized in these hollow spheroids exchange ions. Their three-dimensional structure resembles that of human pancreatic ducts, and they may therefore represent a useful model system for investigation of Cl- and HCO3- ion exchange processes in the human pancreas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.