Abstract

Release of fowlpox virus (FWPV) as extracellular enveloped virus (EEV) appears to proceed both by the budding of intracellular mature virus (IMV) through the plasma membrane and by the fusion of intracellular enveloped virus (IEV) with the plasma membrane. Based on the frequency of budding events compared to wrapping events observed by electron microscopy, FWPV FP9 strain seems to exit chick embryo fibroblast cells predominantly by budding. In contrast to vaccinia virus (VV), the production of FWPV extracellular virus particles is not affected by N(1)-isonicotinoyl-N(2)-3-methyl-4-chlorobenzoylhydrazine (IMCBH). Comparison of the sequence of the VV F13L gene product with its FWPV orthologue showed a mutation, in the fowlpox protein, at the residue involved in IMCBH resistance in a mutant VV. Glucosamine, monensin or brefeldin A did not have any specific effect on FWPV extracellular virus production. Cytochalasin D, which inhibits the formation of actin filaments, reduces the production of extracellular virus particles by inhibiting the release of cell-associated enveloped virus (CEV) particles from the plasma membrane. Involvement of actin filaments in this mechanism is further supported by the co-localization of actin with viral particles close to the plasma membrane in the absence of cytochalasin D. Actin is also co-localized with virus factories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call