Abstract

Three differently adapted populations of sewan grass (Lasiurus scindicus Henr.) were evaluated for structural and functional adaptations to high salinity. The habitats were Derawar Fort (DF, least saline, ECe 15.21), Bailahwala Dahar (BD, moderately saline, ECe 27.56 dS m−1) and Ladam Sir (LS, highly saline, ECe 39.18 dS m−1) from within the Cholistan Desert. The adaptive components of salt tolerance in sewan grass were assessed by determining various morpho–anatomical and physiological attributes. The degree of salt tolerance of all three ecotypes of L. scindicus from the saline habitats was compared in a controlled hydroponic system to evaluate the adaptive components that are expected to be genetically fixed during a long evolutionary process. Salinity tolerance in the most tolerant LS population relied on increased root length and total leaf area, restricted uptake of toxic Cl−, increased uptake of Ca2+, high excretion of Na+, accumulation of organic osmolytes, high water use efficiency, increased root, thicker leaf and cortical region, intensive sclerification, large metaxylem vessels, and dense pubescence on abaxial leaf surface. The BD population (from moderately saline soil) relied on high Ca2+ uptake, Na+ excretion, epidermal thickness, large cortical cells, thick endodermis and large vascular tissue. The DF population (from less saline soil) showed a significant decrease in all morphological characteristics; however, it accumulated organic osmolytes for its survival under high salinities. Structural modifications in all three populations were crucial for checking undue water loss under physiological stress that is caused by high amounts of soluble salts in the soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call