Abstract
We define a notion of morphisms between open games, exploiting a surprising connection between lenses in computer science and compositional game theory. This extends the (perhaps more intuitively obvious) definition of globular morphisms as mappings between strategy profiles that preserve best responses, and hence in particular preserve Nash equilibria. We construct a symmetric monoidal double category in which the horizontal 1-cells are open games, vertical 1-morphisms are lenses, and 2-cells are morphisms of open games. States (morphisms out of the monoidal unit game) in the vertical category give a flexible solution concept that includes both Nash and subgame perfect equilibria. Products in the vertical category give an external choice operator that is reminiscent of products in game semantics, and is useful in practical examples. We illustrate the above two features with a simple worked example from microeconomics, the market entry game.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.