Abstract

In this paper we introduce foundational techniques and prove the following: if X is a \mathbb{Z}^d subshift without periodic points, if Y is a \mathbb{Z}^d square mixing subshift of finite type containing a finite orbit and if there exists a homomorphism X\rightarrow Y, then X embeds into Y if and only if h(X)<h(Y). For the proof, clopen markers are used to generate Voronoi tiles whose thickened boundaries are coded using the homomorphism. The entropy gap and the square mixing permit the construction of an injective code on the tile interiors. A second paper will show that \mathbb{Z}^2 square filling mixing shifts of finite type are square mixing and that homomorphisms exist, resulting in an extension of Krieger's Embedding Theorem to \mathbb{Z}^2 subshifts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.