Abstract

This paper presents the basic results of the morphing wing planform optimization of an experimental unmanned air vehicle for minimum drag at steady level flight. The aerodynamic design tool that consists of the three-dimensional panel method, two-dimensional boundary layer solution and generalized reduced gradient method-based optimization is appropriate for fixed wing and morphing wing conceptual and preliminary design. The morphing concept is implemented into the solution with the geometric constraints of the wing planform and the airfoil shape design variables. The drag that is created by other components of the aircraft is calculated according to empirical formulas. Wing drag and aircraft drag comparisons between baseline wing (BASE), optimum fixed wing and morphing wing are discussed with the obtained planform and airfoil shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call