Abstract

Abstract. Atmospheric turbulence can significantly affect aircraft missions in terms of aerodynamic loads and vibration. These effects are particularly meaningful for MALE-HALE UAS because of their high aspect ratios and because of their low speed, sometimes comparable with that of the gust itself. Many studies have been conducted to reach the goal of efficient gust alleviation. A viable solution appears the application of morphing technology. However, the design of morphing aircraft is a strongly multidisciplinary effort involving different expertise from structures to aerodynamics and flight control. In this study, a multidisciplinary wing-and-tail morphing strategy is proposed for attaining gust attenuation in UAVs. The strategy is based on the combined use of: i) an automatic detection system that identifies gust direction and entity and ii) an aeroelastic model stemming from the coupling between a high-order structural model that is able to resolve the motion and the strain and stress distributions of wings with complex internal structures and a Vortex Lattice Method (VLM) model that accounts for the aerodynamics of the wing-tail system. The gust alleviation strategy employs the information from the detection system and the aeroelastic model to determine the modifications of the wing and the tail surfaces aimed at contrasting wind effects, reducing induced loads and flight path errors. Numerical results are presented to assess the capability of the framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.