Abstract
The dawn of research on shock and boundary layer interaction control dates back to the 1970s, when humped transonic aerofoils were first studied as a means to improve the performance of supercritical aerofoil technology at off-design conditions. Since then, shock control bumps have been found to be promising devices for such kind of flow control. They have a smearing effect on the shock wave structure achieved through isentropic pre-compression of the flow upstream of the main shock and can significantly lower wave drag without incurring unacceptable viscous losses. However, their performance is strongly dependent on a set of geometrical parameters which must be adjusted according to the ever-changing flight conditions. A concept for an adaptive shock control bump is therefore presented. The proposed actuation mechanism aims at a compact, lightweight and simple structure which could be integrated into the spoiler region of near-future aircraft without major design changes required. Numerical optimization of a simplified analytical model of the structure is used to investigate the shock control bump adaptation to various aerodynamic target shapes. Compromises between geometrical conformity and both structural and actuation related requirements are studied. Furthermore, an outlook is given on design issues related to three-dimensional effects on a finite span shock control bump.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.