Abstract
A 6-dimensional vibrationally-complete compound-model morphed potential with radial shifting (CMM-RS) has been generated for the hydrogen-bonded dimer OC–HF. Four morphing parameters only are optimized correcting for inadequacies in the underlying ab initio potential. The morphing transformation utilized a rotationally resolved spectroscopic database composed of microwave and near infrared spectroscopic information. Band origin vibrational frequencies are fitted to an average standard deviation of 0.016 cm −1. The equilibrium rotational constant of OC–HF is determined to be B e = 3345.68(30) MHz, equilibrium center of mass CO to center of mass HF distance, R e = 3.598(1) Å, and equilibrium dissociation energy D e = 1310(10) cm −1. Ground state dissociation energy D 0 = 742.5(50) cm −1, first order anharmonic constants and other properties of the complex are also evaluated. Characteristics of the CMM-RS potential can also be compared with predictions using previous ab initio potentials. Limitations of the morphing methodology and its potential applications are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.