Abstract
Morphine and other opioid agonists induce spinal in vivo release of cholecystokinin (CCK), a neuropeptide with anti-opioid properties. However, so far the opioid receptor subtype responsible for this effect has not been determined. In the present in vivo microdialysis study, the morphine-induced release of cholecystokinin-like immunoreactivity (CCK-LI) in the dorsal horn was completely blocked by the delta-opioid antagonist naltrindole (10 microM in the perfusion fluid). Neither the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP; 10 microM in the perfusion fluid), nor the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI); 10 microM in the perfusion fluid) had any significant effect in this respect. In addition, systemic administration of the delta-opioid receptor agonist BW373U86 (1 mg/kg, s.c.) and spinal administration of the delta(2)-opioid receptor agonist, Tyr-D-Ala-Phe-Glu-Val-Val-Gly amide ([D-Ala(2)] deltorphin II) (1 microM in the perfusion fluid) induced a significant increase of the CCK-LI level. The effect of BW373U86 on spinal CCK-LI release was completely blocked by spinal administration of naltrindole. The mu-opioid receptor agonist [D-ala(2)-N-Me-Phe(4)-Gly(5)-ol]-enkephalin (DAMGO) (1 microM in the perfusion fluid or 1 mg/kg, s.c.) failed to alter the CCK-LI level. Peripheral nerve lesions have previously been shown to down-regulate mu- and delta-opioid receptors in the dorsal horn, to increase the gene-expression of CCK and CCK-receptor mRNA in dorsal root ganglion neurons and to alter the potassium-induced spinal CCK-LI release. After complete sciatic nerve transection, administration of the two selective delta-opioid receptor agonists induced a significant release of CCK-LI, which was comparable to controls. In contrast, neither systemic nor spinal administration of morphine and DAMGO altered the spinal CCK-LI release in axotomized animals. The present data indicate that the delta-opioid receptor mediates morphine-induced CCK-LI release in the spinal cord.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.