Abstract

We previously demonstrated that morphine withdrawal induced hyperactivity of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN) in rats, in parallel with an increase in the neurosecretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis, as evaluated by corticosterone release. These neuroendocrine effects were dependent on stimulation of alpha-adrenoceptors. In the present study, Fos immunostaining was used as a reflection of neuronal activity and combined with immunostaining for tyrosine hydroxylase (TH) for immunohistochemical identification of active neurones during morphine withdrawal. Dependence on morphine was induced by 7-day chronic subcutaneous implantation of six morphine pellets (75 mg). Morphine withdrawal was precipitated by administration of naloxone (5 mg/kg subcutaneously) on day 8. Fos immunoreactivity in the PVN and also in the nucleus tractus solitarius (NTS)-A2 and ventrolateral medulla (VLM)-A1 cell groups, which project to the PVN, increased during morphine withdrawal. Following withdrawal, Fos immunoreactivity was present in most of the TH-positive neurones of the A2 and A1 neurones. In a second study, the effects of administration of adrenoceptor antagonists on withdrawal-induced Fos expression in the PVN were studied. Pre-treatment with alpha1- or alpha2-adrenoceptor antagonists, prazosin (1 mg/kg intraperitoneally) and yohimbine (1 mg/kg intraperitoneally), respectively, 20 min before naloxone administration to morphine-dependent rats markedly reduced Fos expression in the PVN. Similarly, pre-treatment with the beta antagonist, propranolol (3 mg/kg intraperitoneally), significantly prevented withdrawal-induced Fos expression. Collectively, these results suggest the hypothesis that noradrenergic neurones in the brainstem innervating the PVN are active during morphine withdrawal, and that activation of transcriptional responses mediated by Fos in the HPA axis following withdrawal are dependent upon hypothalamic alpha- and beta-adrenoceptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.